

Contents lists available at ScienceDirect

Journal of Hazardous Materials

journal homepage: www.elsevier.com/locate/jhazmat

Investigation of simultaneous adsorption of SO_2 and NO on $\gamma\text{-alumina}$ at low temperature using DRIFTS

Ying Xie^a, Ying Chen^{b,*}, Yugang Ma^a, Zhenglai Jin^{a,c}

^a Department of Chemical and Environmental Engineering, Guangdong University of Petrochemical Technology, Maoming 525000, Guangdong, China ^b Zhejiang Ocean University, Zhoushan, 316000, Zhejiang, China

^c School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing 210044, Jiangsu, China

ARTICLE INFO

Article history: Received 28 April 2011 Received in revised form 7 August 2011 Accepted 9 August 2011 Available online 16 August 2011

Keywords: SO₂ NO γ-Al₂O₃ Adsorption mechanism DRIFTS

1. Introduction

The emission of sulphur oxides (SO_x) and nitrogen oxides (NO_x) from flue gases, causing acid rain and urban air pollution, is a major environmental issue. Normally, SO_x and NO_x in flue gases consist of more than 98% sulphur dioxide (SO_2) and over 90–95% nitric oxide (NO) [1,2]. To control SO_2 and NO_x emission, a great deal of simultaneous removal processes have been developed [3–9]. Flue gas treatment technologies are broadly classified as dry and wet techniques. The wet techniques use scrubber columns in which the flue-gas mixture is subjected to liquid wash to remove gaseous SO_2 and NO_x with high efficiency, however, the wet process induces the difficulty of product disposal. Therefore, it is highly desirable to have a suitable single-step dry process for the removal of SO_2 and NO_x from flue gas.

As a promising dry process, the NOXSO process uses a regenerable sorbent (prepared by spraying sodium carbonate on γ -Al₂O₃) to remove SO₂ and NO_x simultaneously by catalytic oxidation. The process was tested at different scales, which was still in stage of demonstration industrial plant [10]. FLS-miljØ-Denmark has developed a new process derived from NOXSO process. In the process, the simultaneous adsorption of SO₂ and NO_x was performed on Na- γ -Al₂O₃ in a circulating dilute phase riser reactor. De Wilde

ABSTRACT

The interaction mechanism between SO₂ and NO on γ -Al₂O₃ was explored by diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) and outlet response of the concentrations of NO, NO₂ and SO₂ under exposure of Al₂O₃ to SO₂ and/or NO in the absence or presence of oxygen at 150 °C. The results showed that SO₂ promoted NO oxidation and NO transformed weakly adsorbed SO₂ into strongly adsorbed species on γ -Al₂O₃, and the presence of O₂ facilitated this transformation. An interaction mechanism between SO₂ and NO on γ -Al₂O₃ was thus postulated. The exposure of Al₂O₃ to SO₂ and NO in the presence of O₂ resulted in the formation of at least two types of intermediates. One type was [SO₃NO], which decomposed to form NO₂, and the other type was [SO₃NO₂], which decomposed to form SO₃. The decomposition of both intermediates probably formed O vacancies replaceable by gaseous O₂.

Crown Copyright © 2011 Published by Elsevier B.V. All rights reserved.

et al. performed simultaneous SO₂ and NO_x removal on Na- γ -Al₂O₃ at lower temperature (150 °C) [11]. The interaction of SO₂ and NO_x on Na- γ -Al₂O₃ is described. They explained the influence of the SO₂ presence on the simultaneous adsorption of NO and O₂ by the adsorbed SO₂ as an intermediate in the NO and O₂ adsorption. With respect to the role of supporter γ -Al₂O₃ and interaction of SO₂ and NO on γ -Al₂O₃ without Na-impregnation, however, not much information is available in literature. Moreover, few studies related to the sequential adsorption of SO₂ and NO_x on γ -Al₂O₃.

In this paper, the interaction among NO, SO₂ and O₂ on γ -Al₂O₃ at low temperature(150 °C) was systematically studied. Different with De Wilde's research [11] sequential adsorption experiment was carried out for better understanding the reactions occurring on γ -Al₂O₃ surface. Finally, the interaction mechanism of SO₂ and NO was proposed in this paper.

2. Experimental

The sample of γ -Al₂O₃ was obtained from Merck (Merck Co., Germany) in the form of powder with a particle size of 0.10–0.15 mm. The specific surface area was $128 \text{ m}^2/\text{g}$, and the average pore diameter and pore volume were 7 nm and 0.2484 cm³/g, determined by ourselves. The feed gas mixture contained 0.075% NO, 0.51% SO₂, 4.5% O₂, and balance Ar.

The adsorption experiments were performed in a fixed-bed reactor apparatus. The sample (1 g) was charged in a stainless reactor $(\emptyset 19 \text{ mm})$ and then purged under inert flow at a total flow rate

^{*} Corresponding author. Tel.: +86 580 2556212; fax: +86 580 2551439. *E-mail address:* chenying9468@126.com (Y. Chen).

^{0304-3894/\$ –} see front matter. Crown Copyright © 2011 Published by Elsevier B.V. All rights reserved. doi:10.1016/j.jhazmat.2011.08.032

of 100 ml/min at 600 °C for 1 h in order to remove containing oxygen compounds (H₂O and CO₂); it was then cooled to 150 °C and exposed to a mixture of NO and/or SO₂ in Ar at a total flow rate of 100 ml/min until the concentration of NO and SO₂ in the outlet gas became steady.

A series of NO and SO₂ adsorption experiments on γ -Al₂O₃ were performed by exposing the samples to NO and/or SO₂ in Ar with or without oxygen. SO₂ and NO sequential experiments were also performed (termed PreSO₂ and PreNO). PreSO₂ indicates that SO₂/O₂ was first introduced to a fresh catalyst ('clean' Al₂O₃). After saturation (sulphated Al₂O₃), the SO₂ gas flow was changed to inert gas for 5 min, followed by exposure of the sulphated Al₂O₃ to NO/O₂ in Ar. PreNO indicates that NO/O₂ was first introduced to a fresh catalyst ('clean' Al₂O₃). After saturation (nitrated Al₂O₃), the nitrated Al₂O₃ was exposed to SO₂/O₂ in Ar.

The measured outlet response curves were determined in a flow-reactor equipped with a Total Sulphur/Nitrogen Analyzer for monitoring the concentrations of NO, NO₂ and SO₂ in the outlet gas (detection limit S or N with 0.2 mg/m³). After saturation, the sample was cooled to 50 °C and then purged in Ar for 1 h. Finally, a temperature ramp of 10 °C/min from 50 to 727 °C was applied with an Ar gas rate of 20 ml/min. The diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) spectrum was carried out on a Bruker vector 33 spectrometer

3. Results and discussion

3.1. Adsorption of SO₂ and NO

The amounts of adsorbed SO₂ and NO under different atmospheres over $\gamma\text{-Al}_2O_3$ at 150 $^\circ\text{C}$ are summarised in Table 1.

3.1.1. Separate adsorption of SO₂ and NO

Comparing SO₂ with SO₂/O₂ (experiments a and b in Table 1), the amount of adsorbed SO₂ in the absence of O₂ was 0.265 mmol g⁻¹, whereas that in the presence of O₂ was 0.321 mmol g⁻¹. This demonstrated that the adsorption of SO₂ alone on γ -Al₂O₃ at 150 °C occurred, and that the presence of O₂ enhanced SO₂ adsorption (the amount of adsorbed SO₂ increased by 20%). In addition, 0.014 mmol g⁻¹ of SO₂ desorbed when sweeping with Ar at 150 °C, which indicated that some adsorbed SO₂ was unstable.

Comparing NO with NO/O₂ (experiments c and d), the amount of adsorbed NO in the absence of O₂ was 0.0298 mmol g⁻¹, whereas in the presence of O₂, it was 0.038 mmol g⁻¹. These data indicated that NO could be independently adsorbed on γ -Al₂O₃ at 150 °C. Additionally, the amount of adsorbed NO increased in the presence of O₂. In experiment c for NO in the absence of O₂, oxygen-containing compounds were removed from the γ -Al₂O₃ surface by purging with Ar at 600 °C for 1 h before adsorption. However, a trace of NO₂ still occurred in the outlet gas. This was likely that lattice oxygen of the γ -Al₂O₃ participated in the oxidation reaction [12,13].

3.1.2. Simultaneous adsorption of SO₂ and NO

Comparing the amount of adsorbed SO₂ over γ -Al₂O₃ under SO₂/NO and SO₂ atmospheres (experiments e and a in Table 1), the amount of adsorbed SO₂ for simultaneous adsorption of SO₂ and NO was higher than that in the absence of NO, which indicated that NO enhanced the adsorption of SO₂.

Comparing SO₂/NO with NO (experiments e and c in Table 1), although the amount of adsorbed NO was almost the same, NO₂ was also detected in the outlet gas for simultaneous adsorption of SO₂ and NO. Based on thermodynamics, it was unlikely that the oxygen of NO₂ was from SO₂. Thus, the oxidation of NO may be attributed to the lattice oxygen of γ -Al₂O₃ with SO₂, which promoted this oxidation reaction. When $SO_2/NO/O_2$ was compared with SO_2/NO (experiments f and e in Table 1), both the amounts of adsorbed SO_2 and NO were significantly higher than in the absence of O_2 . This observation revealed that O_2 facilitated the simultaneous adsorption of SO_2 and NO, whereas NO promoted the adsorption of SO_2 and vice versa.

3.1.3. Sequential adsorption of SO₂ and NO

Comparing SO_2/O_2 over "nitrated Al_2O_3 " with SO_2/O_2 over "clean Al_2O_3 " (experiments h and b in Table 1), the amount of adsorbed SO_2 over the "clean Al_2O_3 " was $0.321 \text{ mmol g}^{-1}$, whereas that over the "nitrated Al_2O_3 " increased to $0.377 \text{ mmol g}^{-1}$. Thus, pre-adsorbed NO species on Al_2O_3 promoted SO_2 adsorption. Moreover, in experiment h, SO_2/O_2 was exposed to "nitrated Al_2O_3 " after NO/O₂ was saturated on the Al_2O_3 and NO and NO₂ were detected in the outlet gas. It might have been that some adsorbed NO species on the Al_2O_3 were replaced by SO_2 due to its stronger acidity, leading to the discharge of NO and NO₂ into the outlet gas.

When NO/O₂ over "sulphated Al₂O₃" was compared with "clean Al₂O₃" (experiments g and d in Table 1), the amount of adsorbed NO increased by 27%, which indicating that pre-adsorbed SO₂ species on Al₂O₃ promoted NO adsorption. In the PreSO₂ experiment (experiment g in Table 1), the desorbed SO₂ was 0.0533 mmol g⁻¹, whereas that for SO₂/O₂ over "clean Al₂O₃" was 0.014 mmol g⁻¹ (experiment b in Table 1) by sweeping with Ar. The reason for this phenomenon was probably that some pre-adsorbed SO₂ was replaced by NO. In conclusion, both the adsorption of SO₂ on nitrated Al₂O₃ (PreNO) and NO on sulphated (PreSO₂) were promoted regardless of the sequence of exposure for SO₂ or NO.

3.2. DRIFTS studies of adsorbed species

3.2.1. Separate adsorption of SO₂ and NO

The surface species formed from the reaction of SO₂ or NO on Al₂O₃ were studied by DRIFTS (Fig. 1). Fig. 1(a, b and i) shows the spectra of SO₂ or SO₂/O₂ adsorption on Al₂O₃ and the desorption after SO₂/O₂ saturation at 150 °C for 1 h.

Datta et al. [14] identified at least five different adsorption SO_2 sites on Al_2O_3 : a species physically adsorbed on hydroxyl groups (Al–OH–SO₂) with bands at 1334 and 1148 cm⁻¹, a weakly chemisorbed species (Al–O–SO₂) with bands at 1322 and1140 cm⁻¹, two species chemisorbed on acidic (positively charged aluminium ions, Al–SO₂) Al³⁺ sites with bands at 1255 and 1189 cm⁻¹, and one strongly chemisorbed species (Al–SO₃) with a broad band at approximately 1060 cm⁻¹. As seen from spectra (a) and (b), the bands at 1325 cm⁻¹ were observed and assigned to a weakly chemisorbed species (Al–O–SO₂) [15]. In addition, the bands between 1200 and 1000 cm⁻¹ might all be characteristic peaks of mixtures of the above-mentioned SO₂ surface species.

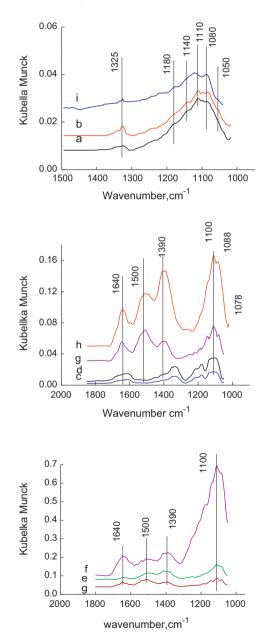
It was noted that the intensity for the bands from spectrum (b) was greater than that from spectrum (a). Additionally, the increase in intensity at 1325 cm⁻¹ indicated that O_2 had an effect on SO_2 chemisorption at 150 °C, which probably enhanced SO_2 adsorption on O^{2-} basic sites of Al_2O_3 ($Al-O-SO_2$). In the literature, Andersson et al. [16] reported that the amount of SO_2 adsorbed in the presence of O_2 was much higher than that absorbed in the absence of O_2 . The results (seen from experiments b and a in Table 1) were in agreement with Andersson's report. It was probable that O_2 formed new basic sites at the lattice defect-sites on Al_2O_3 , thus increasing the amount of $Al-O-SO_2$ species present. Furthermore, compared with spectrum (b), the intensity for bands of spectrum (i) at 1325 and 1140 cm⁻¹ decreased, indicating that adsorbed SO_2 was bonded to O^{2-} basic sites through the sulphur atom ($Al-O-SO_2$), a weak surface species readily desorbed by sweeping in Ar at 150 °C.

Fig. 1(c and d) displays representative DRIFTS data for Al_2O_3 exposed to NO at 150 °C. The bands in the region from 1640 to 1000 cm⁻¹ were assigned to surface nitrate and nitrite species [17].

Experimental no.	Feed gas, Ar balance	Amount adsorbed SO_2 (mmol g ⁻¹)	Amount adsorbed NO (mmol g ⁻¹)	SO2 desorption rate below 600 $^\circ\text{C}(\%)^f$
a	SO ₂	0.265	_	30
b	SO_2/O_2^a	0.321	-	31
с	NO ^b	-	0.0298	-
d	NO/O ₂	-	0.0380	-
e	SO ₂ /NO ^c	0.324	0.0308	16
f	SO ₂ /NO/O ₂	0.582	0.0866	0.5
g	PreSO ₂ NO/O ₂ ^d	-	0.0484	0.6
h	PreNO SO ₂ /O ₂ ^e	0.377	-	0.5

Table 1 The amount of SO₂ or NO adsorbed on γ -Al₂O₃ at 150 °C.

^a Sweeping with inert gas (Ar) at 150 °C after absorption, SO₂ (0.014 mmol g^{-1}) in sweeping gas.


^b NO₂ was found in outlet gas during the adsorption process.

^c NO₂ was found in outlet gas during the adsorption process.

^d SO₂ (0.053 mmol g^{-1}) in outlet gas during the adsorption process.

^e NO_x was found in outlet gas during the adsorption process.

^f Mole ratio of SO₂ desorption below 600 °C and SO₂ absorbed at 150 °C.

Fig. 1. DRIFT spectra of Al₂O₃ exposed to different atmospheres at 150 °C. (a) SO₂; (b) SO₂/O₂; (c) NO; (d) NO/O₂; (e) SO₂/NO; (f) SO₂/NO/O₂; (g) PreSO₂: pre-adsorbed SO₂ and NO/O₂; (h) PreNO: pre-adsorbed NO and SO₂/O₂;

(i) desorption at $150 \circ C$ for 1 h after exposure to SO_2/O_2 .

The bands at 1630 and 1246 cm^{-1} were assigned to bridged nitrate, 1570 and 1249 cm^{-1} were assigned to bidentate nitrate, 1574 and 1290 cm^{-1} were assigned to monodentate nitrate, and the bands at 1470 and 1080 cm⁻¹ were assigned to linear nitrite. In addition, the bands at 1240 and 1180 cm⁻¹ were assigned to bidentate nitrite, whereas 1320 and 1230 cm⁻¹ were assigned to bridged nitrite. In general, the bands ranging from 1640 to 1500 cm⁻¹ were mainly assigned to surface nitrate species and bands between 1400 and 1000 cm⁻¹ were mainly assigned to surface nitrate species.

It has been reported that the exposure Al_2O_3 to NO mainly formed nitrites on basic sites, and exposure of Al_2O_3 to NO_2 primarily formed nitrates at these sites [17–19]. In Fig. 1(c and d), it can be seen that bands at 1640–1500 cm⁻¹ and 1400–1000 cm⁻¹ were again observed, indicating that surface nitrite and nitrate species might have formed. Therefore, it was suggested that NO_2 formed due to the oxidation reaction of adsorbed NO and lattice oxygen on Al_2O_3 . Compared with (c) and (d) in Fig. 1, the band intensities increased in the presence of O_2 , suggesting that gaseous O_2 might migrate into O vacancies to enhance adsorption of NO and NO_2 [20].

3.2.2. Simultaneous adsorption of SO₂ and NO

Compared with the result of exposure of Al_2O_3 to NO, the intensity for bands at $1640-1500 \text{ cm}^{-1}$ increased in the case of simultaneous adsorption of SO₂ and NO (Fig. 1(e and c)). This observation indicated that more surface nitrate species formed in the case of SO₂/NO. It thus seemed that SO₂ promoted the oxidation of NO to form NO₂ absorbed species. In Fig. 1(e and a), the bands at 1390 cm^{-1} and 1100 cm^{-1} grew in intensity under conditions of simultaneous adsorption of SO₂ and NO, an effect assigned to surface sulphates (SO₄²⁻)[1,15]. This indicated that NO could enhance SO₂ oxidation and lead to the formation of surface sulphates. These data were in good agreement with results reported by Tomohiro et al. [21].

Compared with the spectra of exposure to SO_2/NO (e), all of the band intensities for exposure to $SO_2/NO/O_2$ (f) increased, especially the bands at 1390 cm^{-1} and 1100 cm^{-1} , assigned to surface sulphates (SO_4^{2-}). These results indicated that gaseous O_2 promoted mutual oxidation of SO_2 and NO.

3.2.3. Sequential adsorption of NO and SO₂

Fig. 1(g and h) depicts the DRIFTS results of "nitrated Al_2O_3 " exposed to SO_2/O_2 (PreNO) and "sulphated Al_2O_3 " exposed to NO/O_2 (Pre SO_2). It was found that both nitrate (1640–1500 cm⁻¹) and SO_4^{2-} (1390 and 1100 cm⁻¹) formed regardless of the sequence of exposure to SO_2 and NO. Compared with sulphated Al_2O_3 exposed to NO/O_2 (g in Fig. 1), the bands at 1390 and 1100 cm⁻¹ increased in intensity when nitrated Al_2O_3 was exposed to SO_2/O_2 (h in Fig. 1). In this case, more SO_4^{2-} formed. Thus, the amounts

of nitrate and SO_4^{2-} formed were correlated with the sequence of exposure.

3.3. Response curve

Figs. 2 and 3 display the measured outlet responses of NO, NO_2 and SO_2 .

3.3.1. Separate adsorption of SO₂ and NO

In Chang's report [22], it was demonstrated that the desorption of weakly absorbed SO₂ species on basic sites occurred below 600 °C, whereas that of strongly absorbed SO₂ species on acidic sites occurred above 600 °C. Fig. 2(c) shows that the SO₂ response curve exhibited three desorption peaks, indicating different degrees of basicity for the surface basic sites of γ -Al₂O₃. By comparison to SO₂/O₂ and SO₂, it appeared that the area of the SO₂ desorption peak (below 600 °C) was greater in the presence of O₂ than in the absence of O₂ and that the total amount of absorbed SO₂ increased (Table 1). It is likely that adsorbed O₂ created new basic sites on defect sites of the Al₂O₃ surface, leading to an increased number of weakly absorbed SO₂ species.

Based on the decomposition equations for magnesium nitrate [23], aluminium nitrate decomposition equations were determined as follows:

$$Al_2(NO_2)_3 \to Al_2O_3 + 3NO \tag{1}$$

 $Al_2(NO_3)_3 \rightarrow Al_2O_3 + 3NO + 1.5O_2$ (2)

$$Al_2(NO_3)_3 \rightarrow Al_2O_3 + 3NO_2 \tag{3}$$

It was noted that NO was formed by the decomposition of nitrite and nitrate and that NO_2 was formed by the decomposition of nitrate.

Because nitrite decomposed more easily than nitrate, the low temperature peaks for NO represented the decomposition of nitrite, whereas the high-temperature peaks for NO and NO₂ represented the decomposition of nitrate. Therefore, the low- and high-temperature peaks represented weakly and strongly absorbed species, respectively. After exposure of Al_2O_3 to NO in the absence of O_2 , the high-temperature peak for NO₂ appeared, indicating that nitrate species formed on the surface of Al_2O_3 (Fig. 2(b)). The reason for this phenomenon might have been the oxidation of adsorbed NO to NO₂ by lattice oxygen to form nitrate species.

After exposure to NO/O₂, the position of the low-temperature peak of NO shifted towards lower temperature, and the area of the low temperature peak increased within a wide range. This development indicated that new basic sites formed on the defect sites of Al₂O₃ in the presence of O₂, increasing the amount of weakly adsorbed species. The area of the response peak at high temperature for NO_x (NO and NO₂) also greatly increased. This indicated that a considerable amount of NO was oxidized into NO₂ (i.e., more surface nitrate on γ -Al₂O₃). This observation was likely attributed to the formation of O vacancies after the lattice oxygen participated in the reaction which were subsequently replaced by gaseous O₂ for the reaction. Otherwise, the adsorbed oxygen on defect sites could also have participated in the oxidation of NO.

3.3.2. Simultaneous adsorption of SO₂ and NO

From Fig. 2(c) and Table 1 (experiments a and e), it can be seen that the area of three SO₂ response peaks below 600 °C for NO/SO₂ decreased compared to SO₂, and the rate of SO₂ desorption dropped from 30% to 16%. However, the amount of SO₂ absorbed increased. The reason for this trend was probably that NO transformed weakly absorbed SO₂ species into strongly absorbed SO₂ species. It was presumed that weakly absorbed SO₂ species (Al–O–SO₂) was the active species. According to the DRIFT results, the strongly absorbed species were most likely Al–O–SO₃ or SO₄^{2–}.

By comparing the SO₂/NO and SO₂/NO/O₂ cases, the SO₂ response peaks nearly disappeared (the rate of SO₂ desorption decreased from 16% to 0.5%, experiments a and e) below 600 °C. However, the amount of SO₂ absorbed greatly increased. Thus, the weakly adsorbed SO₂ species were likely transformed into more strongly adsorbed species (surface sulphates) in the presence of O₂. It also seemed that gaseous O₂ promoted this transformation process. These results were in accordance with DRIFT results where the bands at 1390 cm⁻¹ and 1100 cm⁻¹, characteristic of surface sulphates, were found to be greatly increased.

Compared with the results of response peaks for NO alone, the low-temperature response peak of NO disappeared in the case of NO/SO₂. Meanwhile, the area of the NO_x response peaks increased and the position for the high-temperature peaks of NO_x both shifted towards lower temperatures. It was thus presumed that lattice oxygen participated in the oxidation of weakly adsorbed NO species and that the presence of SO₂ enhanced the transformation of NO to NO₂ on Al₂O₃. As for the shift towards lower temperatures, it was concluded that SO₂ promoted nitrate decomposition [21].

Compared with the response peaks for NO/SO₂, the area for the NO_x response peaks at high temperature were significantly larger than in the absence of O₂. This indicated that O₂ could facilitate the oxidation NO by SO₂.

3.3.3. Sequential adsorption of NO and SO₂

In Fig. 3(c), it can be seen that the response peak of SO₂ disappeared over a wide range of temperatures (90–600 °C). In addition, less SO₂ was desorbed from the sulphated or nitrated Al₂O₃ compared to the 'clean' Al₂O₃. This indicated that weakly adsorbed SO₂ could be converted into strongly adsorbed species on Al₂O₃ in both cases (preSO₂ and preNO), regardless of the sequence of exposure to SO₂ and NO₂.

The NO and NO₂ response peaks of sulphated Al₂O₃ exposed to NO/O₂ (preSO₂) and nitrated Al₂O₃ exposed to SO₂/O₂ (preNO) were shown in Fig. 3(a and b). Compared with 'clean' Al₂O₃ exposed to NO/O_2 , the area of the low-temperature peak for NO decreased and the area of the high-temperature peak for NO₂ increased. It therefore seemed that the surface species associated with NO lowtemperature desorption took part in oxidative reactions to form surface nitrate as long as SO₂ existed, regardless of the sequence of NO exposure. From Fig. 3(a and b), it was also noted that the position of the high-temperature peaks shifted towards lower temperatures. It is known that when the amount of acidic species (surface sulphates) increases on Al_2O_3 , the desorption of NO_x species occurs more easily [19]. Therefore, compared with sulphated Al₂O₃ exposed to NO/O₂ (preSO₂), a greater shifting towards lower temperatures indicated that more SO₄²⁻ formed on the Al₂O₃ in the case of nitrated Al₂O₃ exposed to SO₂/O₂ (preNO).

According to the results of DRIFTS and response curve (Fig. 3), it was determined that at least two intermediates formed when SO₂ and NO interacted on Al₂O₃ and that the sequence of SO₂ and NO exposure to Al₂O₃ had a significant effect on the amount of intermediates. Furthermore, the decomposition of some intermediates in this scenario proceeded more easily, leading to more surface sulphates in the case of nitrated Al₂O₃ exposed to SO₂/O₂ (preNO).

Based on the discussion of separate, simultaneous and sequential adsorption of SO₂ and NO on Al₂O₃, five main conclusions could be drawn:

- (1) The adsorption and oxidation of SO₂ and NO on the Al₂O₃ was promoted by each other.
- (2) The lattice oxygen of Al₂O₃ may have lower activity but probably could participate in oxidation reactions. Adsorbed O₂ on defect sites of the Al₂O₃ could also participate in oxidation reactions. Gaseous O₂ facilitated the replacement of O vacancies.

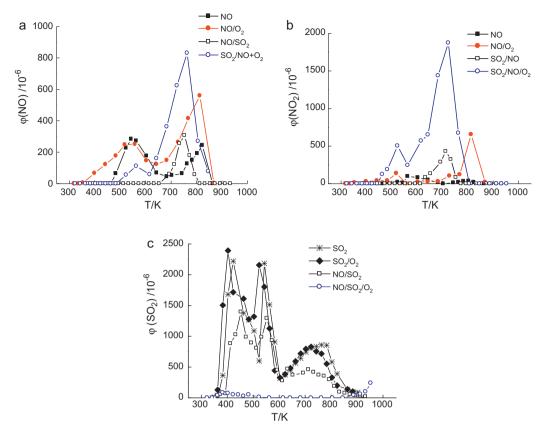
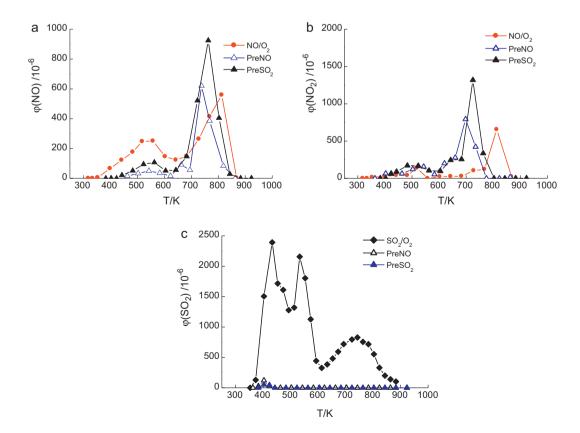



Fig. 2. Measured outlet response of NO, NO $_2$ and SO $_2$ in different atmospheres. (a) NO; (b) NO $_2$; and (c) SO $_2$.

Fig. 3. Measured outlet response of NO, NO₂ and SO₂ on sulphated (preSO₂) and nitrated (preNO) Al_2O_3 at 150 °C. (a) NO; (b) NO₂; and (c) SO₂.

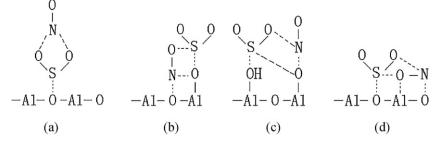


Fig. 4. Intermediates formed for SO_2 and NO interactions on an Al_2O_3 surface.

$$-0 - A1 - 0 - A1 - 0 - A1 - 0 - \underbrace{SO_2 \ NO}_{i} \underbrace{SO_2 NO}_{i} \underbrace{SO_2 - \cdots NO}_{i} \underbrace{SO_3 - \cdots - O}_{i} - A1 - O -$$

Fig. 5. Possible modes of interacting for SO₂/NO/O₂ on an Al₂O₃ surface.

- (3) The weakly absorbed NO and SO₂ species (Al−O−SO₂ and Al−O···NO) associated with low-temperature desorption might have activity.
- (4) The weakly absorbed NO and SO₂ species could be partly replaced with each other on sulphated and nitrated Al_2O_3 (preSO₂ and preNO). The adsorptions of SO₂ and NO were also promoted by each other regardless of the sequence of exposure to SO₂ and NO.
- (5) At least two intermediates formed when SO₂ and NO interacted on Al₂O₃, and the amount of intermediates was affected by the amount of surface SO₂ and NO_x species. Some intermediates decomposed more easily to form surface sulphates (SO₄²⁻) in the case of SO₂ exposure to nitrated Al₂O₃ (preNO) rather than NO exposure to sulphated Al₂O₃ (preSO₂).

3.4. Mechanism

Wilde et al. [24] proposed several intermediates, as shown in Fig. 4(a). Apparently, more NO adsorbed species were favoured in the formation of intermediate [SO₃NO₂]. For the PreNO process, when the nitrated Al₂O₃ was exposed to SO₂/O₂, the basic sites of the Al₂O₃ were mostly occupied by NO_x (NO or NO₂). The amount of [SO₃NO₂] formed was then much higher than [SO₃NO] due to a considerable amount of NO adsorbed species (Al–O···NO).

The decomposition process for intermediates $[SO_3NO]$ and $[SO_3NO_2]$ are shown in Eqs. (4)–(8), where [] represents O vacancies.

 $[SO_3NO] \rightarrow SO_3 + NO + [] \tag{4}$

$$[SO_3NO] \rightarrow SO_2 + NO_2 + [] \tag{5}$$

 $[SO_3NO_2] \rightarrow SO_3 + NO_2 + 2[] \tag{6}$

 $[SO_3NO_2] \rightarrow SO_2 + NO_2 + [] \tag{7}$

$$[SO_3NO_2] \rightarrow SO_3 + NO + [] \tag{8}$$

The intermediate $[SO_3NO]$ decomposed according to Eqs. (4) and (5). However, for the preSO₂ process, the predominant intermediate formed was $[SO_3NO]$. It was therefore concluded that (5) was the main process for decomposition of $[SO_3NO]$.

The other intermediate $[SO_3NO_2]$ decomposed according to Eqs. (6)–(8). For the preNO process, the main intermediate formed with more SO_4^{2-} on the Al₂O₃ was $[SO_3NO_2]$. It could therefore be concluded that (6) and (8) were possible decomposition pathways. However, in Eq. (6), as the lattice oxygen is inactive and two lattice oxygens are consumed in the formation of $[SO_3NO_2]$, there was little chance that decomposition occurred via Eq. (6). Thus, (8) was the main process for decomposition of $[SO_3NO_2]$.

In the following, two modes were proposed for the interaction of SO_2 and NO on Al_2O_3 .

Mechanism I: Al–O···SO₂ reacting with gaseous NO in the presence of O₂ formed intermediate [SO₃NO], which decomposed to form NO₂, SO₂ and an O vacancy. The lattice oxygen and defect-site oxygen was assumed to be regenerated by gaseous O₂.

Mechanism II: Al-O···SO₂ or Al-OH···SO₂ interacting with adjacent Al-O···NO formed intermediate [SO₃NO₂], which decomposed to form NO, an O vacancy and SO₄^{2–} (or NO₂, two O vacancies and SO₄^{2–}). The lattice oxygen and defect site oxygen on Al₂O₃ was assumed to be regenerated by gaseous O₂.

The possible interacting modes of SO_2 and NO on Al_2O_3 are illustrated in Fig. 5.

4. Conclusions

The interaction of adsorbed SO₂ and NO on γ -Al₂O₃ at low temperature (150 °C) was studied by DRIFT and measured outlet response curves. The adsorptions of SO₂ and NO on Al₂O₃ were promoted by each other, especially in the presence of O₂. The weakly absorbed species of NO (Al–O···NO) and SO₂ (Al–O···SO₂) might have activity and could be transformed into strongly absorbed species. In addition, the lattice oxygen of Al₂O₃ likely had a low activity, but could directly participate in oxidation reactions. At least two types of intermediates formed when SO₂ and NO interacted on Al₂O₃. One type was [SO₃NO], which decomposed to form NO₂, and [SO₃NO₂], which decomposed to form SO₃. The decomposition of both intermediates could form O vacancies, which could then be replaced by gaseous O₂.

References

- I. Dahlan, K.T. Lee, A.H. Kamaruddin, A.R. Mohamed, Sorption of SO₂ and NO from simulated flue gas over rice husk ash (RHA)/CaO/CeO₂ sorbent: evaluation of deactivation kinetic parameters, J. Hazard. Mater. 185 (2011) 1609–1613.
- [2] K.C. Pillai, S.J. Chung, T. Raju, Experimental aspects of combined NO_x and SO₂ removal from flue-gas mixture in an integrated wet scrubber-electrochemical cell system, Chemosphere 76 (2009) 657–664.
- [3] D.S. Jin, B.R. Deshwal, Y.S. Park, H.K. Lee, Simultaneous removal of SO₂ and NO by wet scrubbing using aqueous chlorine dioxide solution, J. Hazard Mater. B135 (2006) 412–417.
- [4] I. Dahlan, K.T. Lee, A.H. Kamaruddin, A.R. Mohamed, Selection of metal oxides in the preparation of rice husk ash (RHA)/CaO sorbent for simultaneous SO₂ and NO removal, J. Hazard. Mater. 166 (2009) 1556–2155.
- [5] W.Y. Sun, S.L. Ding, S.S. Zeng, W.J. Jiang, Simultaneous absorption of NO_x and SO₂ from flue gas with pyrolusite slurry combined with gas-phase oxidation of NO using ozone, J. Hazard. Mater. 192 (2011) 124–130.
- [6] G.Y. Xie, Z.Y. Liu, Z.P. Zhu, Q.Y. Liu, J. Ge, Z.G. Huang, Simultaneous removal of SO₂ and NO_x from flue gas using a CuO/Al₂O₃ catalyst sorbent I. Deactivation of SCR activity by SO₂ at low temperatures, J. Catal. 224 (2004) 36–41.
- [7] G.Y. Xie, Z.Y. Liu, Z.P. Zhu, Q.Y. Liu, J. Ge, Z.G. Huang, Simultaneous removal of SO₂ and NO_x from flue gas using a CuO/Al₂O₃ catalyst sorbent II: promotion of SCR activity by SO₂ at high temperatures, J. Catal. 224 (2004) 42–49.
- [8] A.K. Das, J. De. Wilde, G.J. Heynderickx, G.B. Marin, CFD simulation of dilute phase gas-solid riser reactors: part II-simultaneous adsorption of SO₂-NO_x from flue gases, Chem. Eng. Sci. 59 (2004) 187–200.
- [9] S. Sumathi, S. Bhatia, K.T. Lee, A.R. Mohamed, Cerium impregnated palm shell activated carbon (Ce/PSAC) sorbent for simultaneous removal of SO₂ and NO-process study, Chem. Eng. J. 162 (2010) 51–57.
- [10] W.T. Ma, A.M. Chang, J.L. Haslbeck, L.G. Neal, NOXSO SO₂/NO_x flue gas treatment process adsorption chemistry and kKinetics: novel adsorbents and their environmental applications, AIChE Symp. Ser. 309 (1995) 18–31.

- [11] J. De. Wilde, G.B. Marin, Investigation of simultaneous adsorption of SO_2 and NO_x on Na-(-alumina with transient techniques, Catal. Today 62 (2000) 319–328.
- [12] S. Blonski, S.H. Garofalini, Molecular dynamics simulations of γ-alumina and γ-alumina surfaces, Surf. Sci. 295 (1993) 263–274.
- [13] I. Levin, D. Brandon, Metastable alumina polymorphs: crystal structures and transition sequences, J. Am. Ceram. Soc. 81 (1998) 1995–2012.
- [14] A. Datta, R.G. Cavell, R.W. Tower, Z.M. George, Claus catalysis. 1. Adsorption of sulfur dioxide on the alumina catalyst studied by FTIR and EPR spectroscopy, J. Phys. Chem. 89 (3) (1985) 443–449.
- [15] S.W. Nam, G.R. Gavalas, Adsorption and oxidative adsorption of sulfur dioxide on (-alumina, Appl. Catal. 55 (1989) 193–213.
- [16] S. Andersson, R. Pompe, N. Vannerberg, SO_x adsorption/desorption processes on (-alumina for SO_x transfer catalyst, Appl. Catal. 16 (1985) 49–58.
- [17] B. Westerberg, E. Fridell, A transient FTIR study of species formed during NO_x storage in the Pt/BaO/Al₂O₃ system, J. Mol. Catal. A: Chem. 165 (2001) 249–263.
- [18] R. Burch, E. Halpin, J.A. Sullivan, A comparison of the selective catalytic reduction of NO_x over Al₂O₃ and sulphated Al₂O₃ using, CH₃OH and C₃H₈ as reductants, Appl. Catal. B: Environ. 17 (1998) 115–129.
- [19] P. Li, G.Z. Lu, Effect of SO₂ on NO catalytic oxidation (V): the mechanism of SO₂ over NiO/γ-Al₂O₃, Acta Chim. Sin. 61 (2003) 660–665.
- [20] N. Apostolescu, T. Schröder, S. Kureti, Study on the mechanism of the reaction of NO₂ with aluminium oxide, Appl. Catal. B: Environ. 51 (2004) 43–50.
- [21] I. Tomohiro, K. Hajime, Y. Tsutomu, Initial step of flue gas desulfurization-an IR study of the reaction of SO₂ with NO_x on CaO, Environ. Sci. Technol. 34 (2000) 2799–2803.
- [22] C.C. Chang, Infrared studies of SO $_2$ on γ -alumina, J. Catal. 53 (1978) 374–385.
- [23] W.S. Epling, L.E. Campbell, A. Yezerets, Overview of the fundamental reactions and degradation mechanisms of NO_x storage/reduction catalysts, Catal. Rev. 46 (2) (2004) 163–245.
- [24] J. De. Wilde, A.K. Das, G.H. Heynderickx, G.B. Marin, Development of a transient kinetic model for the simultaneous adsorption of SO₂-NO_x over Na/γ-Al₂O₃ sorbent, Ind. Eng. Chem. Res. 40 (2001) 119–130.